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Abstract

The COVID-19 pandemic has had a dramatic impact on the economic, social and
personal lives of Americans across the country, and this effect has been perhaps most
keenly felt in New York City. The ongoing national dialogue regarding when and how
to re-open shuttered businesses underscores the need to understand the types of social
activities and venues most strongly correlated with the initial spread of the virus. To
that end, this report investigates the incidence of COVID-19 cases in New York city by
leveraging Foursquare data on social venues throughout the city. Regression and machine
learning techniques are utilized, with population data from the U.S. Census Bureau as
a control. I find that the number of transportation terminals in a given zip code is a
statistically significant predictor of COVID-19 cases, and this result is robust to a number
of model specifications. I also find that the number of restaurants and recreational venues
is not a positive predictor of COVID-19 cases in the early stages of the outbreak, nor a
positive predictor of the growth rate in cases between 4/1/2020 and 5/12/2020, the time
of writing.
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Introduction
This report explains the incidence of COVID-19 cases in New York City (NYC) by lever-

aging Foursquare mobile application data on social venues across the 177 zip codes contained
within the city’s borders. In the early months of 2020 NYC was the global epicenter of the
virus, and at the time of writing represents 4.5% of all COVID-19 cases worldwide, and 13.4%
of cases in the United States. Nevertheless, the city is witnessing a clear downward trend in
daily new cases reported: on May 8th only 425 new cases were identified, down from a peak
of 6,213 on April 6th. This ebb is likely due to aggressive measures enacted by state and
local policymakers. On March 22nd Governor Andrew Cuomo instituted a state-wide lock-
down which mandated the closure of all nonessential businesses; leaving only grocery stores,
pharmacies and other essential operations open. All non-solitary outside activities, including
team sports, were also banned.

While these stringent restrictions have doubtlessly played an important role in stemming
the tide of new cases, their macroeconomic effects cannot be overlooked. Over the course
of the last five weeks, data from the New York Department of Labor reveal that the total
number of New Yorkers filing new jobless claims has reached 1.4 million. This is roughly
two-thirds the total jobless claims filed during the entire span of the Great Recession, which
lasted from June 2007-November 2009. Adding these 1.4 million jobless filers to the ranks
who had previously filed in the months before the COVID-19 crisis began puts New York
state’s unemployment rate at approximately 13%.1 This level of unemployment breaks the
previous seasonally adjusted post-Great Depression record of 10.3% in February 1976, and
does not take into account the sizable population of workers who are underemployed. To put
this in perspective, during the Great Depression New York state’s peak unemployment rate
was about 23%.

Given the severe economic consequences of the mandated lockdown, and the encouraging
trend in new cases reported, there is currently a robust debate among New York state poli-
cymakers about whether such drastic measures are still necessary. Health officials continually
warn that a headlong rush to reopen businesses, if not done in a cautious and sensible manner,
could lead to a re-emergence of the virus that once again overwhelms the healthcare infras-
tructure of the city. Therefore, an understanding of the types of activities and social venues
most strongly correlated with the initial spread of COVID-19 could help inform policymakers’
decision-making about which businesses can be re-opened, while still maintaining a tolerable
level of risk of a subsequent outbreak. The following analysis does exactly this and, using
Foursquare data on social venues across the 177 zip codes of NYC, explains which venues are
the best predictors of COVID-19 incidence.

Data
The dependent variables in the analysis are the total number of positive COVID-19 cases,

the ratio of positive tests to total tests administered and the growth rate in positive cases
between 4/1/2020 (the earliest date available) and 5/12/2020 (date of writing), segmented
by NYC zip code. These data are assembled by the NYC Department of Health and Mental
Hygiene (DOHMH) Incident Command System for COVID-19 Response (Surveillance and
Epidemiology Branch in collaboration with Public Information Office Branch), and are up-
loaded to GitHub daily. It should be noted that, due to the fact that this information is being
collected in real-time, it is by definition preliminary and subject to change as the COVID-19

1Mayra Rodriguez Valladares. “New York State Unemployment Rate Is At Highest Level Since the Great
Depression.” Forbes, April 26, 2020.
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response continues. The analysis focuses on reported COVID-19 cases as of 4/1/2020, the
earliest date available, in order to investigate which venues most strongly contributed to the
initial spread of the virus while minimizing the confounding effect of the lockdown. It seems
reasonable to conclude that this effect is minimal, as the state-wide closure of businesses had
been implemented only 10 days prior to the date the data was compiled.

Given the fact that the population of an area is an important predictor of disease trans-
mission generally, this variable is used as a control throughout the analysis. These data are
taken from U.S. Census Bureau. Including this variable in predictive models ensures that
any inferences made about the types of venues associated with positive COVID-19 cases are
not simply an artifact of the size of the population in a given zip code. This variable is also
included in regressions which take the ratio of positive to total tests as the dependent variable
in order to account for heterogeneity in public testing resources available, which are likely
correlated with population.

Lastly, the independent variables of interest throughout the analysis are the total number
of social venues located in each NYC zip code, as categorized by the author. These data
are retrieved from the venues group of the Foursquare City Guide2 API by first assigning
each zip code centroid in NYC a latitude and longitude using the geocoder library, and then
inputting these coordinates into formatted queries. The results are limited to a radius of 500
meters from the coordinates inputted, and duplicates are removed whenever radii overlap.
The final variables are the total number of venues in a given zip code categorized as a hotel,
restaurant, transportation terminal, store, market or recreational venue. These variables are
generated through string searches of the venue categories returned by the API. The variable
Market, for example, is the total number of venues in a given zip code with "market",
"grocery", "supermarket", etc. listed in the venue category. It should be noted that these data
suffer from coverage issues. However, missing observations can reasonably be characterized
as missing at random, and correlated with population in a given zip code, which is controlled
for throughout the analysis.3 Summary statistics for the independent variables are given in
the Appendix, while summary statistics for the dependent variables are shown in Table 1.

Results and Discussion

Exploratory Analysis

In order to visualize the variation in incidence of COVID-19 across New York City’s zip
codes, I first generate a choropleth map of the ratio of positive cases as of 4/1/2020 to total
population.

2Foursquare City Guide is a mobile application developed by Foursquare Labs Inc., which provides personal
recommendations of local venues based on users’ browsing and check-in history.

3For an excellent treatment see Donald B. Rubin, “Inference and Missing Data,” Biometrika 63, no. 3
(December 1976): 581-592.
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Table 1: Summary Statistics of Dependent Variables

Cases as of Cases as of Ratio of Positive Tests Growth
5/12/2020 4/1/2020 to Total Tests Rate (%)

Count 177.00 177.00 177.00 177.00
Mean 1030.53 219.800 0.51 359.58
S.D. 733.00 152.00 0.095 135.90
Min. 22.00 6.00 0.25 75.00
25% 486.00 112.00 0.44 255.56
50% 831.00 182.00 0.51 361.08
75% 1457.00 306.00 0.58 457.74
Max. 4152.00 947.00 0.77 888.52

Dependent variables are calculated at the zip code level. N% refers to the Nth percentile.
As such, 50% is the median. Ratio of Positive Tests to Total Tests is as of 4/1/2020. Growth
Rate is calculated between 4/1/2020 and 5/12/2020. Growth Rate is expressed as a
percentage.

Figure 1: Ratio of Positive Cases to Total Population as of 4/1/2020 by NYC Zip Code
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It is immediately obvious from Figure 1 that there exists a large degree of variation in
COVID-19 cases across zip codes. Interestingly, Staten Island and Manhattan have similar
incidence rates despite the fact that population density is demonstrably higher in the latter.

To more incisively analyze the distribution of positive cases as of 4/1/2020 and 5/12/2020,
I generate box plots which are displayed in Figure 2.
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Figure 2: Box Plots of Total Positive COVID-19 Cases by Zip Code: April vs. May

A number of observations can be gleaned from this plot. First of all, the rapid transmission
of the virus between April and May is immediately apparent. On April 1st the median number
of positive cases was 182, while in May it had swelled to 831. This underscores the importance
of the New York state lockdown, as the disparity between these numbers would likely be much
greater had it never been implemented. Secondly, both distributions have a number of outliers
which likely represent the more densely populated zip codes of NYC. To further investigate
this relationship I generate a scatter plot of positive COVID-19 cases in April and population,
and overlay a simple regression line.

Figure 3: Scatter Plot of Positive COVID-19 Cases as of 4/1/2020 and Population

Figure 3 illustrates 2 important points. First of all, there is in fact a clear, linear relation-
ship between COVID-19 cases and population which should be incorporated in the regression
analysis to follow. Secondly, the variation in positive cases appears to increase as the popula-
tion increases, and this heteroskedasticity should also be accounted for in the models derived
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below.

Regression Analysis

As an initial step in understanding the factors that explain COVID-19 transmission in
NYC I run an OLS regression with total positive COVID-19 cases as of 4/1/2020, the earliest
date available by zip code, as the dependent variable. As mentioned in the introduction, the
earliest data is utilized in order to curtail the confounding effect of the lockdown, which was
implemented in New York state on March 22nd. The independent variables are the total
population and the total number of different types of venues, as categorized above. Het-
eroskedasticity robust standard errors are employed to minimize the risk of biased inference,
as indicated above. To assess potentiality of multicollinearity, I also calculate the variance
inflation factor (VIF) for each of the independent variables. A widely utilized rule of thumb
is that the VIF for each variable should be below 10, which is indeed the case. The results of
this model (Model 1) are illustrated in Table 2.

Table 2: Total Positive COVID-19 Cases as of 4/1/2020 (OLS)

Model 1
Standard

Coefficient Error P-Value VIF
Constant 18.359 14.53 0.206 7.10

(1.26)
Population 0.005*** 0.00 0.000 1.26

(11.786)
Transportation 9.559* 5.239 0.068 1.10

(1.824)
Market -1.588 3.870 0.682 1.45

(-0.410)
Store 1.051 1.209 0.385 2.03

(0.869)
Restaurant -0.591 0.850 0.487 3.74

(-0.695)
Bar -1.608 2.694 0.551 2.44

(-0.597)
Recreation -2.408** 1.020 0.018 2.65

(-2.362)
Hotel 10.518* 5.595 0.060 2.03

(1.880)
Model estimated using Ordinary Least Squares with heteroskedasticity-robust
standard errors. T-statistics reported in parentheses. Significance levels reported
are as follows: * p<0.10, ** p<0.05, and *** p<0.01. VIF is the variance inflation
factor.

It is evident from the t-statistics (reported in parentheses) that the population of a given
zip code is the single best predictor of how many positive COVID-19 cases are observed.
The generally accepted norm is that a z statistic greater than 1.96 in absolute value implies
statistical significance. The z-statistic for Population is 11.786, and the corresponding p-
value is .000; which means that, with repeated sampling from the data generating process, the
probability of observing an effect at least as large, given that there is no relationship between
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COVID-19 cases and population, is 0.0%! Transportation is significant at the 6.8% level,
which seems reasonable given that transportation hubs often witness dense concentrations of
people in minimally ventilated confines, and are therefore favorable environments for disease
transmission. Moreover, many residents of the city continued to rely on public transportation
for their work commute in April, despite the lockdown being instituted on March 22nd. It
should be noted, however, that statistical significance is distinct from practical significance,
and the latter may in fact be of more interest to policymakers. For example, the coefficient
on Store implies that an additional store in a zip code, ceteris paribus, will lead to roughly
1 additional positive case of COVID-19, on average. While this effect is not statistically
significant, it should nevertheless be taken into account when designing preventative measures
to be implemented within the retail industry.

Interestingly, Market does not appear to be important predictor of the spread of the virus,
and this is empirically verified by the results of a LASSO regression, shown below. LASSO is a
type of penalized regression in which the sum of the absolute value of the regression coefficients
is constrained to be less than a constant, which is equivalent to imposing a double exponential
prior, centered at zero, on the coefficients. This often results in the "shrinking" of coefficient
estimates. As can be seen from the results below, when this technique is implemented with 10-
fold cross-validation, and the tuning parameter is optimized using a grid search, the coefficients
on Market and Store are shrunk to 0. It should be noted that the inferences made in the
following models below are robust to the omission of these variables.

Table 3: Total Positive COVID-19 Cases as of 4/1/2020 (LASSO)

Model 2
Standard

Coefficient Error P-Value
Constant 21.216 16.995 0.214

(1.248)
Population 0.004*** 0.000 0.000

(37.509)
Transportation 6.560 5.813 0.261

(1.129)
Market 0.000 3.818 1.000

(0.000)
Store 0.000 1.414 1.000

(0.000)
Restaurant -0.126 0.516 0.808

(-0.243)
Bar -2.162 2.406 0.370

(-0.899)
Recreation -1.236 1.106 0.265

(-1.118)
Hotel 0.000 8.654 1.000

(0.000)
Dependent variable is total COVID-19 cases as of 4/1/2020, by zip code.
Model estimated using Least Absolute Shrinkage and Selection Operator
(LASSO). Heteroskedasticity-robust standard errors employed.
T-statistics reported in parentheses. Significance levels reported are as
follows: * p<0.10, ** p<0.05, and *** p<0.01.
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A legitimate concern for OLS in this instance is that inference may be biased by the fact
that, for various reasons, access to testing was greater in some zip codes as opposed to others.
As of May 12th, 1,182,998 people in the entire state of New York have been tested for the
virus, which is roughly 61 tests per 1,000 people. It seems reasonable to think that, given
the dearth of resources available for testing, some areas in NYC would have greater access
than others. To alleviate this concern, I also run an OLS regression in which the dependent
variable is the proportion of people testing positive for the virus, out of the total number of
tests administered in a given zip code, while retaining a control for total population. Model 3
includes all covariates utilized in the regressions above, while Model 4 removes those covariates
that were eliminated in the LASSO regression.

Table 4: Ratio of Positive COVID-19 Tests to Total Tests as of 4/1/2020 (OLS)

Model 3 Model 4
Standard Standard

Coefficient Error P-Value Coefficient Error P-Value
Constant 0.513*** 0.017 0.000 0.513*** 0.017 0.000

(29.789) (30.511)
Population 8.386e−7*** 2.65e−7 0.002 8.885e−7*** 2.58e−7 0.001

(3.159) (3.450)
Transportation 0.009* 0.005 0.051 0.0096** 0.005 0.036

(1.956) (2.094)
Market 0.002* 0.003 0.613

(0.506)
Store 0.001 0.001 0.364

(0.908)
Restaurant -0.002** 0.001 0.015 -0.001** 0.001 0.022

(-2.443) (-2.288)
Bar 0.002 0.002 0.338 0.002 0.002 0.328

(0.958) (0.979)
Recreation -0.005*** 0.001 0.000 -0.005*** 0.001 0.000

(-3.981) (-4.537)
Hotel 0.003 0.007 0.663

(0.436)
Dependent variable is the ratio of positive COVID-19 cases to total cases as of 4/1/2020, by zip code. Model
estimated using Ordinary Least Squares and heteroskedasticity-robust standard errors. T-statistics reported
in parentheses. Significance levels reported are as follows: * p<0.10, ** p<0.05, and *** p<0.01.

As illustrated by the table above, the inferences garnered from this model are radically
different, and cast significant doubt on the results obtained in Model 1. While Population
has retained its statistical significance, the importance of the number of hotels in a given zip
code is dramatically reduced, which accords with the results of the LASSO regression above.
Moreover, the number of restaurants in a given zip code is now a significant, negative predictor
in the model. Finally, the coefficient on Transportation is now statistically significant at
the 5% level in Model 4, and is barely below this threshold in Model 3.

It should be noted, however, that an OLS regression with a proportion as the dependent
variable can potentially render misleading results. First of all, predicted values from such
models may not necessarily lie within the interval [0,1]. Secondly, such models may violate
the normality assumption, as well as the linearity assumption necessary for the Gauss-Markov
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theorem to be applicable. Nevertheless, such models can be instructive if handled with care.
As a beginning step to determine whether the model is appropriate, I examine the true and
predicted values for the proportion of positive COVID-19 cases obtained. Fortunately the true
proportion varies along a very restricted interval, with a minimum of 0.25 and a maximum
of 0.77, and due to this clustering of the data none of the predicted values from Model 3 fall
outside the [0,1] interval, as can be seen in the table below:

Table 5: Comparison of True and Predicted Values from Model 3

True Proportion Predicted Proportion
Count 177.00 177.00
Mean 0.512 0.512
S.D. 0.095 0.060
Min. 0.250 0.292
25% 0.441 0.488
50% 0.514 0.527
75% 0.576 0.556
Max 0.772 0.602

N % refers to the Nth percentile. As such, 50% is the median. Predicted
proportion derived from an OLS regression with ratio of positive cases to
total tests of 4/1/2020 as the dependent variable and
heteroskedasticity-robust standard errors (Model 3).

To further assess the appropriateness of OLS in this instance, I analyze 2 commonly
utilized diagnostic plots. In order to gauge the linearity assumption I plot the studentized
residuals from Model 3 against the fitted values. If the model is well specified, this plot will
look like random noise, with a fitted red line that is roughly horizontal; otherwise, we are
underfitting the model and not capturing the non-linearity of the data. Secondly, in order to
determine the plausibility of the normality assumption I employ a normal Q-Q plot, which
graphs the studentized residuals against the expected order statistics of the standard normal
distribution. If the normality assumption is appropriate, the studentized residuals will fall on
the line y=x (in red).
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Figure 4: Residuals vs. Fitted Values from Model 3

Figure 5: Normal Q-Q Plot from Model 3

Both of these plots cast serious doubt on the appropriateness of OLS in this instance. As
we can see from Figure 5, the normality assumption does not appear to hold in the tails of the
distribution. Moreover, Figure 4 indicates that there is in fact non-linearity in the data which
are not being captured in Model 3. Once again, and as is often the case in such settings, the
tails of the distribution are most problematic. Taken together, this suggests that a non-linear
model is more appropriate when analyzing the proportion of positive COVID-19 tests. As
an improvement I employ a method proposed by Papke and Wooldridge (1996) in which a
generalized linear model is utilized with robust standard errors. This approach makes use
of the logit link function (that is, the logit transformation of the response variable) and the
binomial distribution, which is the proper choice of family given this particular setting, as
testing for COVID-19 can be thought of as a sequence of Bernoulli trials. The results of this
technique are illustrated in Table 6.

As is evident from the table, the use of the approach advocated by Papke and Wooldridge
(1996) does not qualitatively affect most of the inference. The variables Population, Recre-
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ation, and Restaurant continue to be statistically significant predictors in Models 5 and
Model 6. However, an important result for policymakers is that Transportation is also now
statistically significant at the 5% level in both models. The robustness of this result suggests
that it is in fact an important predictor of COVID-19 transmission in NYC. According to
Model 5, in repeated sampling we would observe an effect at least as large, if there were
no relationship between transportation terminals and the proportion of positive COVID-19
tests, only 3.2% of the time. These results lend important insights into how and which venues
in NYC can be re-opened while still maintaining a tolerable risk of virus transmission. In
the case of transportation hubs, it also suggests that trenchant measures should be taken to
ensure the safety of these areas.

Table 6: Ratio of Positive COVID-19 Tests to Total Tests as of 4/1/2020 (GLM)

Model 5 Model 6
Standard Standard

Coefficient Error P-Value Coefficient Error P-Value
Constant 0.0524** 0.068 0.440 0.0541 0.067 0.418

(0.772) (0.810)
Population 3.368e−6*** 1.05−6 0.001 3.58e−6*** 1.03e−6 0.001

(3.197) (3.475)
Transportation 0.0365** 0.018 0.044 0.039** 0.018 0.032

(2.019) (2.144)
Market 0.007 0.013 0.592

(0.536)
Store 0.004 0.004 0.347

(0.941)
Restaurant -0.007** 0.003 0.013 -0.006** 0.002 0.022

(-2.488) (-2.296)
Bar 0.009 0.009 0.313 0.0087 0.008 0.307

(1.009) (1.022)
Recreation -0.022*** 0.005 0.000 -0.0202*** 0.004 0.000

(-4.021) (-4.521)
Hotel 0.012 0.027 0.650

(0.454)
Dependent variable is the ratio of positive COVID-19 cases to total cases as of 4/1/2020, by zip code. Model
estimated using Generalized Linear Model with Logit link function and Binomial distribution, with
heteroskedasticity-robust standard errors employed. T-statistics reported in parentheses. Significance levels
reported are as follows: * p<0.10, ** p<0.05, and *** p<0.01.

As a final step in the analysis I investigate the factors that explain the growth rate in
positive COVID-19 cases over time. Models 7 and 8 shown below display the results of an
OLS regression in which this growth rate, calculated over the period 4/1/2020 - 5/12/2020,
is taken as the dependent variable and the same set of independent variables are utilized. No
transformation is applied to the data, as the growth in positive cases appears to be largely
linear, and is certainly not exponential in a manner that would require logarithmic scaling.
This can be seen in Figure 6 below, which plots positive COVID-19 cases as of 5/12/2020
against positive COVID-19 cases as of 4/1/2020, with a quadratic polynomial fitted to the
data.
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Figure 6: Scatter Plot of Positive COVID-19 Cases Over Time with Quadratic Fit

Table 7: Growth Rate in COVID-19 Cases Between 4/1/2020 and 5/12/2020

Model 7 Model 8
Standard Standard

Coefficient Error P-Value Coefficient Error P-Value
Constant 4.004*** 0.235 0.000 4.036*** 0.229 0.000

(17.029) (17.658)
Population 7.222e−6** 3.37e−6 0.032 8.148e−6** 3.19e−6 0.011

(2.143) (2.555)
Transportation -0.023 0.086 0.791 -0.021 0.087 0.889

(-0.264) (-0.140)
Market 0.0380 0.045 0.379

(0.880)
Store 0.005 0.023 0.839

(0.204)
Restaurant -0.020** 0.008 0.017 -0.018*** 0.006 0.004

(-2.378) (-2.917)
Bar -0.046* 0.024 0.054 -0.040* 0.021 0.054

(-1.926) (-1.923)
Recreation -0.053*** 0.017 0.001 -0.061*** 0.012 0.000

(-3.194) (-5.157)
Hotel -0.087 0.091 0.341

(-0.953)
Dependent variable is the growth rate in total COVID-19 cases from 4/1/2020-5/12/2020, by zip code.
Model estimated OLS with heteroskedasticity-robust standard errors employed. T-statistics reported in
parentheses. Significance levels reported are as follows: * p<0.10, ** p<0.05, and *** p<0.01.

As one would expect, the population of a given zip code remains a statistically significant
covariate in both models. In addition, the results indicate that Restaurant and Recreation
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are negatively correlated with the growth rate of COVID-19 cases over this time period, which
underscores the efficacy of the shutdown measures enacted in the city.

Conclusion
The COVID-19 pandemic has had a dramatic impact on the economic, social and personal

lives of Americans across the country. Due to a variety of factors including population density
and economic scale, this effect has perhaps been most keenly felt in New York City. According
to the NYC Department of Health and Mental Hygiene (DOHMH), the number of confirmed
deaths attributed to the virus is at least 15,253, with another 5,051 deaths "probably" due
to the same cause; this represents 17.3% - 23.0% of all deaths in the United States due to
the virus. The state-wide closure of all businesses deemed to be non-essential, while clearly
efficacious in curbing the spread of the disease, has also had a devastating effect on the
livelihoods of many New Yorkers. According to the New York Times, city officials estimate
that half of the hotels in the city are not operating, and some 186,000 shops employing
fewer than 10 people could fail.4 This has spurned an intense debate over whether shuttered
businesses should be allowed to re-open and, if so, how to accomplish this in a manner that
does not unnecessarily put additional lives at risk. This discussion highlights the importance
of understanding which factors contributed to the transmission of the virus in the first place,
so that these insights can be incorporated into a reasoned plan for resuming normal economic
and social activities.

To that end, the foregoing analysis employed a regression framework to investigate the
categories of business venues most strongly associated with positive COVID-19 cases as of
4/1/2020, the earliest date for which zip code-level data were available. The number of
transportation hubs in a given zip code was identified as a statistically significant predictor of
the proportion of positive tests using the preferred GLMmodel; in addition, it was statistically
significant at the 3.6% level using OLS. Interestingly, the number of restaurants, bars, and
recreational venues in a zip code did not have a positive, statistically significant impact on
the proportion of COVID-19 positive cases. Moreover, these venues did not have a positive,
statistically significant impact on the growth rates in cases. While future research should
utilize counterfactual observations or instrumental variables to isolate causal effects, these
insights are nevertheless useful to policymakers tasked with managing the timing and form of
the resumption of normal economic activity within the city.

4J. David Goodman. “I Don’t Think the New York That We Left Will Be Back For Some Years.” New
York Times, May 6, 2020.
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Appendix

Table 8: Summary Statistics of Independent Variables by NYC Zip Code

Population Hotel Trans. Store Market Restaurant Bar Recr.

Count 177.00 177.00 177.00 177.00 177.00 177.00 177.00 177.00
Mean 47645.06 0.44 0.67 6.65 2.26 18.46 2.68 6.11
S.D. 26698.40 1.05 1.12 6.23 1.99 17.14 4.01 7.45
Min. 22.00 1.05 1.12 6.26 1.99 17.14 4.01 7.45
25% 486.00 27403.00 0.00 2.00 1.00 5.00 0.00 1.00
50% 42653.00 0.00 0.00 5.00 2.00 12.00 1.00 3.00
75% 67094.00 0.00 1.00 10.00 4.00 28.00 4.00 9.00
Max. 112425.00 7.00 6.00 26.00 9.00 65.00 23.00 44.00

Independent variables are calculated at the zip code level. N% refers to the Nth percentile. As such, 50% is
the median. T rans. and Rec. refer to the total number of transportation terminals and recreational venues,
respectively, in a given zip code.
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